
N88-17232

APPROACHES TO THE VERIFICATION OF RULE-BASED
EXPERT SYSTEMS

Chris Culbert, Gary Riley, Robert T. Savely
Artificial Intelligence Section - FM72

NASA/Johnson Space Center
Houston, TX 77058

ABSTRACT

Expert systems are a highly useful spinoff of
the artificial intelligence research efforts. One
major stumbling block to extended use of ex-
pert systems is the lack of well-defined verifi-
cation and validation (V&V) methodologies.
Since expert systems are computer programs,
the def ini t ions of "ver i f ica t ion" and
"validation" from conventional software are
applicable. The primary difficulty with expert
systems is the use of development methodolo-
gies which don't support effective V&V. I f
proper techniques are used to document re -
quirements, V&V of rule-based expert sys-
tems is possible, and may be easier than with
conventional code. For NASA applications, the
flight technique panels used in previous pro-
grams should provide an excellent way of
verifying the rules used in expert systems.
There are, however, some inherent differences
in expert systems that will affect V&V consid-
eration s.

INTRODUCTION

Expert systems are one of the most important
spin-offs from the artificial intelligence r e -
search efforts. Expert systems have been
around for a number of years and some appli-
cations have proven highly successful. How-
ever, despite their apparent utility and the
growing number of applications being devel-
oped, not all expert systems reach the point of
operational use. One reason for this is the lack
of well understood techniques for V&V of
expert systems.

Developers of computer software for use i n
mission or safety critical applications have

always relied upon extensive V&V to ensure
that safety and/or mission goals were not
compromised by software problems. Also,
software developers have learned that aggres-
sive V&V used early in the software life cycle
can dramatically lower life cycle costs and
improve software quality. Expert systems are
computer programs, and without V&V they
will not be accepted as either safe or cost-ef-
fective solutions to problems.

Despite the clear need for V&V, considerable
confusion exists over how to accomplish V&V
of an expert system. There are even those who
question whether or not it can be done. As
some authors have suggested (Green and
Keyes l) this has led to a vicious circle: V&V of
expert systems is not done because nobody
requires it. Nobody requires V&V of expert
systems because nobody knows how it can be
accomplished. Nobody knows how to do V&V
of expert systems because nobody has done it.

This cycle must be broken for expert system
applications to succeed. However, we must
first understand what we are talking about
when we discuss validation and verification.

DEFINING THE TERMINOLOGY

One basic problem with V&V of expert sys-
tems has been the lack of consistent defini-
tions for both validation and verification.
Partly because expert systems have their own
terminology, there seems to be a tendency to
consider expert systems as something more
than "just computer programs". Since the de-
velopment of an expert system uses new con-
cepts such as knowledge engineers, inference
engines, and knowledge representation, it

191

would seem plausible that the meanings of
verification and validation may also have
changed. However, this is not true.

At the user level, an expert system is 'just a
computer program' and this is the level that
effective V&V must address. Therefore, it is
appropriate to use the definitions for verifica-
tion and validation that apply to conventional
software. The following definitions come from
the IEEE Standard Glossary of Software Engi-
neering Terminologyz:

Verification. The process of determining
whether or not the products
of a given phase of software
development meet all the
r equ i r emen t s e s t a b l i s h e d
during the previous phase.

Validation. The process of evaluating
software at the end of the de-
velopment process to ensure
compliance with sof tware
requirements .

B o e h m 3 suggests more informal definitions
might be:

Verification. "Am I building the product
right ? "

Validation. "Am I building the right
product ? "

When put in this framework, it is clear that
expert systems should be both verifiable and
'validatable' in the conventional sense. If one
accepts that V&V of expert systems can be
done, the next question is how it should be
done. As with conventional software, the key
to V&V lies in the development methodology.

THE COMMON APPROACH TO DEVELOPING
EXPERT SYSTEMS

Most existing expert systems are based upon
relatively new software techniques which
were developed to describe human heuristics
and to provide a better model of complex
systems. In expert system terminology, these
techniques are called knowledge representa-
tion. Although numerous knowledge repre-
sentation techniques are currently in use
(rules, objects, frames, etc) they all share some

common characteristics. One shared charac-
teristic is the ability to provide a very h i g h
level of abstraction. Another is the explicit
separation of the knowledge which describes
how to solve problems from the data which
describes the current state of the world.

Each of the available representations have
strengths and weaknesses. With the current
state-of-the-art, it is not always obvious which
representation is best to use in solving a
problem. Therefore, most expert system de-
velopment is done by rapid prototyping. The
primary purpose of initial prototype is t o
demonstrate the feasibility of a particular
knowledge representation. It is not unusual
for entire prototypes to be discarded if the
representation doesn't provide the proper rea-
soning flexibility.

Another common characteristic of expert sys-
tem development is that relatively few re-
quirements are initially specified. Typically, a
rather vague, very general requirement i s
suggested, e.g., "We want a program to do just
what Charlie does". Development of the expert
system starts with an interview during which
the knowledge engineer tries to discover both
what it is that Charlie does and how he does it.
Often there are no requirements written down
except the initial goal of "doing what Charlie
does". All the remaining system requirements
are formulated by the knowledge engineer
during development. Sometimes, the eventual
users of the system are neither consulted nor
even specified until late in the d e v e l o p m e n t
phase. As with conventional code, failure to
consult the intended users early in the devel-
opment phase results in significant additional
costs later in the program.

So where does all this lead? The knowledge
engineer is developing one or more prototypes
which attempt to demonstrate the knowledge
engineer's understanding of Charlie's exper-
tise. However, solid requirements writ ten
down in a clear, understandable, easy to test
manner generally don't exist. This is why most
expert systems are difficult to verify and vali-
date; not because they are implicitly different
from other computer applications, but because
they are commonly developed in a manner
which makes them impossible to test!

192

NEW APPROACHES TO DEVELOPMENT
METHODOLOGIES

From the preceding section, it should be clear
that the problem is the use of development
methodologies which generally do not gener-
ate requirements which can be tested. There-
fore, the obvious solution is to use a methodol-
ogy which will produce written requirements
which can be referred to throughout develop-
ment to verify correctness of approach and
which can be tested at the end of development
to validate the final program.

Unfortunately, it's not that simple. Some ex-
pert systems can probably be developed by
using conventional software engineering tech-
niques to create software requirements and
design specifications at the beginning of the
design phase (Bochsler and Goodwid) . How-
ever, the type of knowledge used in other ex-
pert systems doesn't lend itself to this ap-
proach. It is best obtained through iterative
refinement of a prototype which allows the
expert to spot errors in the expert system rea-
soning before he can clearly specify the cor-
rect rules.

Since it would appear that rapid prototyping
and iterative development are a necessary
part of expert system development, an appro-
priate model for expert system development
might be the spiral model suggested by
B o e h m 5 and modified by Stachowitz and
Combs6 (Fig. 1). This model allows continued
iterative development while still providing
documented requirements.

Another approach would be to write most of
the requirements and specification documen-
tation after completion of the prototyping
phase. In essence, the prototype would form
the basis for the requirements and would act
as a "living spec". This allows the knowledge
engineer to find the most appropriate knowl-
edge representation method and gain a rea-
sonable understanding of the problem. It also
requires that coding stop at the end of the de-
sign phase so the requirements can be written.
This approach is outlinqd in figure 2 and was
developed at a NASA workshop on Verification
of Knowledge Based Systems at Ames Research
Center in April, 1987.

Figure I - Boehm's Spiral Model

REOUIRE'AENTS,

Figure 2 - Expert System Development Methodology

eksl~nehpse

Drlginsl

1

I J

Design RevIew

1

193

The approach chosen for use will probably de-
pend on the size of the system, the complexity
of the knowledge representation, and the
eventual application environment. For large
systems with many modules or functions it
may be difficult to write all the requirements
at the completion of a single prototyping
phase. The spiral model would be most appro-
priate in this case. For smaller systems which
require few iterations, the second model may
be more appropriate.

MAKING THE REQUIREMENTS WORK

Once we accept that requirements and specifi-
cations must be written and a methodology for
how and when to write them has been
adopted, the actual work of verifying and
validating the program must be done. There
are some general issues which apply to any
expert system and some issues that may apply
to NASA expert systems in particular.

Gene ra l Issues

Along with a requirements document a test
plan should be written. Most of the criteria
used to evaluate conventional software ap-
plies. The test plan should describe how the
requirements and/or prototype will be
checked for completeness, consistency, feasi-
bility, maintainability and testability.

Some of this work can be done automatically.
Testing a rule language for completeness and
consistency may actually be easier than test-
ing conventional programs. The explicit sepa-
ration of knowledge elements from control and
da ta e l emen t s may al low relat ively
straightforward analysis of the prototype by
automated tools (Stachowitz and Comb&). If
automated methods are not used, other stan-
dard methods such as code reviews and man-
ual examination of the rules may also be
comparatively easy, again due to the indepen-
dent nature of the knowledge elements.

Feasibility of knowledge representation is
usually fully tested in the early prototypes,
but the feasibility of other elements of the ex-
pert system, such as performance, user inter-
faces, data interfaces, etc. must be verified and
validated as well.

Finally, the requirements must be examined to
ensure that they are able to be tested. They

should be specific, unambiguous and quantita-
t ive where possible. Objective requirements
will aid in the development of rigorous test
cases for final validation.

Issues Specific to NASA Expert Systems

Expert systems applications for NASA pro-
grams such as the Space Station will be able to
use verification techniques not necessarily ap-
plicable outside the NASA environment. These
verification techniques are a direct derivative
of the methods used to develop procedures,
flight rules, and flight software for the Apollo
and Shuttle programs. They consist of Flight
Technique Panels which regularly review both
the procedures for resolving a problem and
the analysis techniques used to develop those
procedures.

If expertise is not readily available, the analy-
sis efforts typically use high fidelity simula-
tions based on system models to derive and
evaluate control parameters. If expertise is .
available through previous experience, the
existing experts are reviewed by the panel
and their knowledge placed in the appropriate
context. The panels consist of system users,
independent domain experts, system devel-
opers, and managers to ensure adequate cov-
erage of all areas of concern. In previous pro-
grams, the typical output of such a panel was a
set of flight rules describing the operational
requirements for a system.

Sometimes these flight rules were translated
into computer programs (typically as deckion
trees) and embedded in the onboard or ground
computers. An additional verification step was
needed to guarantee that the flight rules ap-
proved by the panel were properly coded.
More often, computer limitations in the Space
Shuttle caused the flight rules to remain in
document form used directly by flight con-
trollers and mission crews.

For future programs, many of the flight rules
which come from the Flight Technique Panels
can be coded directly into expert systems. Ex-
pert systems developed in this manner will
have undergone extensive verification through
the panel review. They should also prove
easier to verify in code form because the rule
language will allow the program to closely
resemble the original flight rule.

194

Expert system applications outside of NASA
could use this same "panel" approach. The dis-
advantage of using the approach discussed
here is the relatively high cost of development
and the need for extensive simulation capa-
bility to define unknown system character-
istics. Programs of the complexity and size
with which NASA regularly deals make this
approach mandatory. Smaller programs may
not be able to afford the resources or effort
involved in verifying a system to this extent,
but the size of the panel and the length of the
review process can be scaled down to some-
thing appropriate for the complexity and size
of the application. For some applications, the
panel approach could look very similar to in-
dependent code review techniques.

Exhaustive testing through simulation remains
the most effective method available for final
validation. However, for any system of reason-
able complexity, exhaustive testing is both
prohibitively expensive and time consuming.
Space Shuttle applications typically used ex-
tensive testing with data sets r ep resen ta t ive
of the anticipated problems or failure modes .
This method is not guaranteed to eliminate all
software bugs, but it can prevent the antici-
pa ted problems. If used properly, representa-
tive testing can eliminate enough problems to
make the software acceptable for mission and
safety critical applications.

OTHER ISSUES FOR EXPERT SYSTEM V&V

So far, this paper has essentially ignored the
differences between conventional software
and expert systems. There are differences
between these two types of software, and
those differences will affect V&V efforts. Some
of the differences are discussed in the follow-
ing.

Verifying the Correctness of Reasoning

l

Verifying that an expert system solves a
problem for the right reasons is sometimes as
important as getting the right answer. This is
particularly important for rule-based e x p e r t
systems since each rule is essentially an inde-
pendent module. In sequential programs, or-
der of calculation is very easy to control a n d
the possible paths through the program to a
given solution can often be identified.

By comparison, a rule-based expert system
fires rules opportunisticly and the number of
potential rule combinations which lead to a
solution can be combinatorially high. In such a
language, identifying all possible paths to a
solution is very difficult. Therefore, it is im-
portant to ensure that the expert system has
gotten the right answer for the right reasons.
This can be accomplished through explanations
provided by the expert system or through
tracing of the rule logic during execution.

Verifying the Inference Engine

The inference engine in a rule-based expert
systems is a completely separate piece of code
from the knowledge base. This portion of the
program has rigid requirements that can be
outlined and tested independently from the
rest of the expert system. Often, it can be veri-
fied once and then used for multiple expert
systems.

Verifying the Expert

An issue that is often raised with expert sys-
tems, is how to certify the expert whose
knowledge is used as the base of an expert
system. For expert systems developed using
the flight techniques panel method, the stan-
dard review process of the panel will ensure
correctness of the experts approach in the fi-
nal rules.

For expert systems developed in other man-
ners, the question is automatically resolved as
long as the expert system is validated. The
entire purpose of validation is to ensure that
the expert system meets all original re-
quirements, including correctness of solution.
If the expert system fails to meet these re-
quirements, then one of three things has hap-
pened; the knowledge engineer has incorrectly
coded the expert's knowledge, the expert has
incorrectly described how he arrives at a so-
lution (or does not understand it himself), or
the expert's method of determining the solu-
tion is incorrect (in which case he probably
isn't really an expert!). Any of these problems
will be detected by the validation process and
hopefully corrected.

Real-Time Performance

Expert systems which must provide guaran-
teed performance in real-time environments

195

are another area that has been questioned.
Most conventional programs provide perfor-
mance "guarantees" through extensive simu-
lation of the expected performance environ-
ment. Expert systems can provide the same
kind of performance "guarantees". It might be
more appropriate to regard these "guarantees"
as upper limits which will not be exceeded for
any permitted inputs.

Less often, some kinds of conventional pro-
grams are analyzed at the machine instruction
level to specifically determine the amount of
time required to process a given data set.
Achieving the same kind of capability in a
rule-based expert system is more difficult.
Examining a rule-language at the machine in-
struction level would be both laborious and
time consuming. However, as with conven-
tional code, it can be done for a given data set
entered in a specific sequence.

Complex Problems with Multiple Experts

Although the majority of the expert systems
currently being developed use expertise from
a single, restricted domain, it is likely that ex-
pert systems will be developed which combine
the expertise of multiple experts from multi-
ple domains. This could lead to systems which
produce answers beyond the capability of any
one person to evaluate.

The panel review method already discussed
for NASA applications is clearly the appropri-
ate method for resolving a problem of this
type. The review process used by the panel
will allow inputs from any number of domain
experts and will also establish the methods of
validating system responses.

Traceabi l i ty of Requi rements

A key part of verification is the process of
tracing each module or functional element of a
program back to the requirements. This pro-
cess helps guarantee that the program will
solve the basic problem and have the desired
characteristics. It also prevents unnecessary
code or features.

However, tracing requirements after they
have been coded in rules may be more diffi-
cult than for conventional code. Some re-
quirements may require multiple rule firings
or the interaction of many elements in the

program to achieve the desired result. Some
rules may be general in nature and therefore
support multiple requirements. Specifically
identifying which rules support which re-
quirements may be difficult.

This problem can become even more difficult
when hybrid representation techniques are
used, Le. when both rules and objects are used
to satisfy the program's requirements. Tracing
requirements through a combination of repre-
sentation schemes could conceivably be very
difficult. Clearly, this is an area that needs
some work. The complexity of this issue may
even preclude the use of hybrid tools in criti-
cal applications.

Verifying the Boundaries of t he Exper t
System Domain

A problem common to most expert systems is
the brittleness of the system near the bound-
aries of the problem domain. It is not difficult
to design an expert system which recognizes
when a problem is completely outside the
bounds of it's domain. It is more difficult to
develop expert systems which are able to
handle problems which are right at the
boundaries of it's domain. That is, problems
which the expert system partially recognizes,
but does not have all the information needed
to solve. For safety or mission critical applica-
tions, the expert system must fail gracefully
(e.g.. fail-safe).

Verifying that the expert system handles such
situations properly could be difficult. The
boundaries of a problem domain are often
somewhat fuzzy. Problems which fall on the
boundaries may be best recognized during
testing rather than identified early in develop-
ment. V&V of an expert system must be
carefully aimed at identifying these bound-
aries if the experts can not readily do so. V&V
must also ensure that the expert system fails
gracefully in these circumstances.

CONCLUSIONS

Verification and validation of expert systems
is very important for the future success of this
technology. Software will never be used in
non-trivial applications unless the program
developers can assure the users/managers
that the software is reliable and generally free
from error. Therefore V&V of expert systems

196

must be done. Although there are issues in-
herent to expert systems which introduce new
complexities to the process, verification a n d
validation can be done. The primary hindrance
to effective V&V is the use of methodologies
which do not produce traceable, testable re -
quirements. Without requirements, V&V are
meaningless concepts. For NASA applications,
an extension of the flight technique panels
used in previous programs should provide
very high levels of verification for expert
systems.

REFERENCES

1.

2 .

3 .

4.

5 .

6.

Green, C. and Keyes, M., "Verification and
Validation of Expert Systems", Workshop
on Knowledge Based System Verification,
NASAIAmes Research Center, Mounta in
View, CA., April 15-17, 1987.

IEEE Standard Glossary for Software Engi-
neering Terminology, IEEE Std. 729-1983,
Los Alamitos, CA., 1983.

Boehm, B.W., "Verifying and Validating
Software Requirements and Design Speci-
fications", IEEE SOFTWARE JOURNAL, Jan-
uary 1984.

Bochsler, D.C. and Goodwin, M.A.,
"Software Engineering Techniques Used t o
Develop an Expert System for Automated
Space Vehicle Rendezvous", Proceeding of
the Second Annual Workshop on Robotics
and Expert Systems, Instrument Society of
America, Research Triangle Park, NC., June
1986,

Boehm, B.W., " A Spiral Model of Software
Development and Enhancement". ACM
Software Engineering Notes, March 1986.

Stachowitz, R.A. and Combs, J . B . ,
"Validation of Expert Systems", Proceed-
ings Hawaii International Conference on
Systems Sciences, Kona, Hawaii, January
6-9, 1987.

196a

